Estrogen and aromatase – Keeping the wolves from the door.

Estrogen and aromatase,  (and the  role of prolactin and a lack of progesterone) in cancer are well documented and so are the stimulatory effects of the neuro-endocrine (nervous system/hormones) disruptors termed xenoestrogens, which mimic the action and excess of estrogen (Kim, Kurita, & Bulun, 2013) (Mungenast & Thalhammer, 2014). Estrogen and notably estradiol/E2 is often measured by a standard blood test, which remains as problematic as other blood tests such as TSH, which I have previously described.

“ At first, it was assumed that the amount of the hormone in the blood corresponded to the effectiveness of that hormone. Whatever was in the blood was being delivered to the “target tissues.” But as the idea of measuring “protein bound iodine” (PBI) to determine thyroid function came into disrepute (because it never had a scientific basis at all), new ideas of measuring “active hormones” came into the marketplace, and currently the doctrine is that the “bound” hormones are inactive, and the active hormones are “free.” Ray Peat

In addition to the obvious production of estrogen in the reproductive tissues, it’s possible to increase estrogen conversion via aromatase, an enzyme which converts androgens such as testosterone to estrogen, is one of the other main factors. Adipose tissue is a prime location for increased aromatase activity.

Another problem with measuring hormones in the blood is that it rarely accounts for the intracellular accumulation of hormones. Estrogen in excess in the cell, promotes fluid retention, swelling and causes an increase in calcium. Measuring pituitary hormones and in particular prolactin (PRL) may give us a better indication of the relative excess of estrogen due to estrogens stimulatory effect on the anterior pituitary and PRL.

PRL excess is associated with issues such as breast cancer, prostate cancer, resistance to chemotherapy, infertility in both men and women, male reproductive health and galactorrhea (Sethi, Chanukya, & Nagesh, 2012) (Rousseau, Cossette, Grenier, & Martinoli, 2002). Treating PRL excess, particularly linked to the most common form of pituitary tumour (1:1000), the prolactinoma is often treated effectively by the dopamine agonists Bromocriptine or Cabergoline. However, it’s not beyond the realms of possibility that prevention and treatment of excess PRL production, be achieved with decreasing synthesis and exposure to estrogens both endogenous and from external sources.

Myopic thinking.

Modern medical thinking and analysis has led us to a reduced proposition when it comes to diseases like cancer. Cancer is essentially a metabolic disease, and the proposed respiratory defect, the idea of scientist Otto Warburg, is often replaced by the mechanistic thinking of the receptor theory of disease. Estrogen receptors are one of the main evaluations for assessing types of cancer but the very essence of the testing leads us to an increased myopic line of questioning, failing to ask the necessary questions that underlie a persons health status.

If a city is being evacuated, its railroad transportation system, will be quickly “saturated,” and the impatience of a million people waiting for a ride wont make much difference. But if they decide to leave on foot, by bicycle, boat or balloon, in all directions, they can leave as soon as they want to, any number of people can leave at approximately the same time. A non-specific system is ‘saturable,” a nonspecific system isn’t saturable. The idea of a cellular “receptor” is essentially that of a “specific” transport and/or response system. Specific transporters or receptors have been proposed for almost everything in biology – for very interesting ideological reasons– and the result has been that the nonspecific processes are ignored and supressed. Ray Peat

Solutions.

Sometimes there are minimal opportunities for people to change their environment. Perhaps creating more solutions to enable better conversations with the environment, is the most pragmatic solution available?

Maintaining the body’s production of energy by optimising thyroid production, suppression of TSH (thyroid stimulating hormone) and lowering of other stress hormones like ACTH, intake of carbohydrates, protein and adequate light can support the necessary energy needed for the liver and digestive system to enhance detoxification of estrogen and estrogen mimickers.  A sluggish, fatty or hypothyroid state of the liver, makes it difficult for estrogen to be excreted. In states of constipation, beta glucaronidase converts inactive estrogen to the active form.  Keeping both estrogen and aromatase low seems a step in the right direction.

Foods also have the capacity to enhance estrogen synthesis. Mushrooms have shown to be a potent inhibitor of aromatase enzymes and have the capacity to lower the systemic production of estrogen (Grube, Eng, Kao, Kwon, & Chen, 2001). However it’s important to note that mushrooms need substantial cooking to reduce the liver toxins present.

 
“The hydrazine-containing toxins that Toth and others wrote about are destroyed by heat. Since extracts made by boiling the mushrooms for three hours were very active, I think it’s good to boil them from one to three hours.

If you want to know more about prepping mushrooms and soups, then check out the link below for The Nutrition Coach, who reminded me why mushrooms for lowering estrogen and a great source of protein will be helpful when consumed regularly.

  

References: 

Grube, B. J., Eng, E. T., Kao, Y.-C., Kwon, A., & Chen, S. (2001). White Button Mushroom Phytochemicals Inhibit Aromatase Activity and Breast Cancer Cell Proliferation. J. Nutr., 131(12), 3288–3293. Retrieved from http://jn.nutrition.org/content/131/12/3288

Kim, J. J., Kurita, T., & Bulun, S. E. (2013). Progesterone action in endometrial cancer, endometriosis, uterine fibroids, and breast cancer. Endocrine Reviews. http://doi.org/10.1210/er.2012-1043

Mungenast, F., & Thalhammer, T. (2014). Estrogen biosynthesis and action in ovarian cancer. Frontiers in Endocrinology, 5(NOV). http://doi.org/10.3389/fendo.2014.00192

Rousseau, J., Cossette, L., Grenier, S., & Martinoli, M. G. (2002). Modulation of prolactin expression by xenoestrogens. Gen Comp Endocrinol, 126(2), 175–182. http://doi.org/10.1006/gcen.2002.7789\rS0016648002977890 [pii]

Sethi, B. K., Chanukya, G. V, & Nagesh, V. S. (2012). Prolactin and cancer: Has the orphan finally found a home? Indian Journal of Endocrinology and Metabolism. http://doi.org/10.4103/2230-8210.104038

http://raypeat.com/articles/articles/pdf/Estrogen-Receptors-what-do-they-explain.pdf

http://www.thenutritioncoach.com.au/anti-ageing/how-i-prep-mushrooms-and-why-its-worth-the-bother/#more-2595

 

What is functional hypothyroidism?

You won’t find the term functional hypothyroidism in the medical literature, or at least not yet. Primarily due to clinical hypothyroidism being bound to a rigid assessment usually diagnosed by the blood test thyroid stimulating hormone or TSH.

TSH secretion is controlled by synthesis of thyroid releasing hormone or TRH in the supraortic and supraventricular nuclei of the hypothalamus. TRH is transported to the anterior pituitary by the hypothalamo- hypophysial portal system where it stimulates synthesis of TSH. T4, T3 and TRH control the secretion of TSH (Gardner et al., 2011).

TSH production can also be affected by TSH receptor damage, medical drugs, disease states, iodide, blood glucose levels and other circulating hormones TSH may also be affected by environmental pollutants and heavy metals (Llop et al., 2015).  Metabolic disease and increases in Body Mass Index appear to be correlated with an increase in TSH levels (Ruhla et al., 2010).

Often, you will see clear links and studies to key micronutrients such as zinc, selenium, iodine and other important co-factors. These deficiencies can exist demographically but usually in westernised societies, there deficiency can be linked to impaired absorption rates, perhaps linked to digestive dysfunction and other factors.

“Measuring the amount of thyroid in the blood isn’t a good way to evaluate adequacy of thyroid function, since the response of tissues to the hormone can be suppressed (for example, by unsaturated fats) (Peat, R.1999).

 Dietary factors such as unsaturated fatty acids in the diet may potentially be one of the most overlooked factors that supress thyroid function. Other factors such as caloric restriction, stressful environments, over exercising and other factors are some of the others. It’s well known that in certain areas of hormone dysregulation such as menstrual cycle irregularities, oligoamenorrohea (loss of cycle), anovulation (failure to ovulate) and lack of libido and fertility in both men and women,  can be attributed to poor energy intake and environmental factors (Nieuwenhuijsen et al., 2014) (Skakkebæk, 2003). Dietary factors have synergy with hormonal imbalances perpetuating high levels of estrogen.

The functional suppression of thyroid function by unsaturated fats, eating a so-called healthy diet (full of uncooked brassica vegetables, nuts and seeds) orthorexic states and other factors is largely ignored by physicians.

I can say with some certainty, after completing postgraduate studies at university with a number of Doctors, that diet and inhibitory factors of diet rarely get assessed when it comes to assessing energy and thyroid function.

A persistent functional hypothyroid state, induced by unsaturated fats may lead to the pre-diabetic and diabetic states induced by an inability to utilise carbohydrate and the preferential shift to use of fats instead of sugars as suggested in the Randle or glucose fatty acid cycle (Randle, Garland, Hales, & Newsholme, 1963). Increased cortisol, oxidation, decreased carbon dioxide and an increased stress on the oxidative system, could potentially lead to glycolysis and an increase in lactic acid, further increasing damage, stress and further suppression of thyroid function.

Measurement of thyroid blood tests remains inaccurate and problematic without the inclusion of a variety of symptoms and previously accurate assessment, such as basal metabolic rate, body temperature and pulse. The suppression of both thyroid and adequate energy states will always remain.

As the common approach for diagnosing hypothyroidism is having TSH above 4 or 5 mmUL and the preferred treatment is to supplement with synthetic levothyroxine. How much change can you realistically achieve if you fail to address the supressed metabolism induced by diet, an individuals susceptibility to stress and their own environment?

 

References:

Gardner, D. G., Shoback, D. M., Greenspan, F. S. et al .(2011). Greenspan’s Basic and Clinical Endocrinology. McGraw Hill.

Llop, S., Lopez-Espinosa, M. J., Murcia, M., Alvarez-Pedrerol, M., Vioque, J., Aguinagalde, X., … Ballester, F. (2015). Synergism between exposure to mercury and use of iodine supplements on thyroid hormones in pregnant women. Environmental Research, 138, 298–305. http://doi.org/10.1016/j.envres.2015.02.026

Nieuwenhuijsen, M. J., Basagana, X., Dadvand, P., Martinez, D., Cirach, M., Beelen, R., & Jacquemin, B. (2014). Air pollution and human fertility rates. Environment International, 70, 9–14. http://doi.org/10.1016/j.envint.2014.05.005; 10.1016/j.envint.2014.05.005

Peat, R. (1999). Thyroid Therapies, Confusion and Fraud. Retrieved from www.raypeat.com/articles/articles/thyroid.shtml

Randle, P. J., Garland, P. B., Hales, C. N., & Newsholme, E. A. (1963). The glucose fatty-acid cycle its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. The Lancet, 281(7285), 785–789. http://doi.org/10.1016/S0140-6736(63)91500-9

Ruhla, S., Weickert, M. O., Arafat, A. M., Osterhoff, M., Isken, F., Spranger, J., … Möhlig, M. (2010). A high normal TSH is associated with the metabolic syndrome. Clinical Endocrinology, 72(5), 696–701. http://doi.org/10.1111/j.1365-2265.2009.03698.x

Skakkebæk, N. E. (2003). Testicular dysgenesis syndrome. In Hormone Research (Vol. 60, p. 49). http://doi.org/10.1159/000074499

 

Why you really shouldn’t be giving up sugar in the New Year.

It’s that time of year again, the silly season is upon us and plenty of people using inaccurate words such as detox are thrown around like Christmas wrapping paper.

For many, the New Year is associated with dietary restrictions, born out of a period of over consumption from the festivities. May of those decisions such as stopping sugar or in particular fruit, as part of the so-called ‘detox ‘ is probably one the poorer choices that people do during this period of fad dieting. So it’s time to put the record straight on how to detox, or more appropriately how to maintain detoxification processes efficiently.

Detoxification and its suggested three phases, like most of the processes in the body is energy/nutrient/hormone dependant. Therefore the ability to detoxify efficiently is regulated by the amount of energy available and influenced greatly by how well your hormones function. The thyroid gland for example, is key to maintaining energy and this means energy for the liver to function. Detoxification is just one of the many functions of the liver, which also include glucose production and storage and the maintenance of adequate cholesterol.

The CDR or cell danger response suggests an evolutionary response to insults that affect the human body (and in particular cellular function) from a variety of sources. These can include:

  • Viral
  • Bacteriological
  • Chemical
  • Parasites
  • Electromagnetic stress
  • Physical and psychological trauma.

The net effects of the CDR can be suggested as a protective mechanism that stiffens cell membranes, perhaps to protect other cells, a decrease in processing of many nutrients and other compounds such as metals, and a decrease in metabolism. Whether this down regulation of function is protective or a result of the damage inflicted remains to be answered. Increased oxidative stress to how the body’s cells function can decrease the ability to generate energy using oxygen. Cellular respiration (ability to use oxygen to provide energy) using oxygen and carbohydrate remains the most efficient system for generating energy. Increased stress decreases the ability to utilise carbohydrate as a fuel. Other compounding factors with the CDR are a change to the gut bacteria, which can increase the fermentation of carbohydrates. So called beneficial bacteria such as Lactobacilli can produce lactic acid that disrupts the cells of the digestive system and increase the amount of gut damaging endotoxin.

For many the over indulgence will increase factors such as endotoxin, making them feel low, irritable and poor energy and sleep. An increase to neuro- transmitters such as serotonin and histamine, will exacerbate these issues and decrease sleep quality. The New Years resolution brings about a restriction of calories and eating less, burdening the digestive system less. People often make the assumption (one of many) that cutting out sugar has caused this miracle change but it may simply be the decrease in food itself. Perhaps it’s the lack of calories and the increase in adrenaline, much like the runners high, which makes people feel great?

For some, the equation of increased movement with less calories that is often employed at this time of year will have a good effect. For many others, and in particular, those who have a cell damage response, that is being resolved, this equation seems to have little effect. The decrease in available energy, to a cell that struggles to maintain adequate energy output, will find the move more, eat less, scenario a challenge.

Ketogenic diets often have great short-term effects for weight loss. In the long term a ketogenic remains a stressed energy state requiring the need for more cortisol, a decrease in carbon dioxide (decreasing the amount of available oxygen for use) and a less efficient form of energy production. Those who have a large amount of weight to lose, potentially expose the metabolic system to increased stress by oxidising fatty acids.

The stressed body requires carbohydrate. Low blood sugar states require a balance of carbohydrate (with fat and protein), to maintain optimal detoxification you need carbohydrate. Unfortunately with the fear mongering on social media you can often observe the following.

  1. Sugar feeds and causes cancer.
  2. Sugar is addictive

Here’s the thing. There is not any scientific proof to validate those statements. The primary fuel for any cell is glucose, even in cancer cells, if sugar is not available, it will generate energy from protein. Otto Warburg’s research has often been misinterpreted to suit inaccurate memes. Damage to the respiratory function of the cell is often the source of mutagenic aspects of cellular/mitochondrial (energy producing cells) that potentiates the growth of cancer.

The sugar is addictive study; well if you look closely at the study you will see that sugar activates the same reward centre of the brain such as sex, exercise and receiving gifts. The science of addiction is beyond the scope of my expertise, however if you have someone that cannot regulate energetic processes that well, they may seek out adequate energy, with sources of easily processed carbohydrates. It would appear that insulin sensitivity becomes an issue when there is an excess of energy.

Are you eating too much? Or is it simply that you cannot process the energy available? Well, if you eating less and moving more but weight, energy, sleep, libido or emotional balance aren’t improving. Then you know which one it is.

I am not suggesting here is that you should over eat sugar and carbohydrates. Much like, I wouldn’t NUTRITIONsuggest overeating broccoli, or drinking too much water.

Either way removing the protective capacity of carbohydrates to create balance is probably not the way to go.

Adrenal Fatigue or Reductionist Thinking?

adrenal

 

Here is the first part of my article, which published in the May 2014, Womens Health and Fitness Magazine.

Adrenal fatigue or reductionist thinking?

Often, being given a distinct diagnoses that can relate to modern living can   make sense to us, a modern condition that makes sense of the hectic lifestyle and the symptoms that we have been experiencing. Over the last decade there has been much literature on a so  called ‘Adrenal fatigue’, whose symptoms are wide reaching from fatigue, digestive dysfunction, weight and sleep issues.

Walther Canon and Hans Seyle, probably the most prominent  scientists to study and interpret the mechanics behind, adrenaline, cortisol and the stress response, showed that when  rats were exposed to high levels of stress, they developed issues such as ulcers, intestinal bleeding and then finally death. The common suggested auto immune diseases that are becoming more prevalent, such as intestinal hyper-permeability or leaky gut can therefore be interpreted as symptoms of chronic stressors.

The premise of adrenal fatigue works something along these lines.

  • You are exposed to stress
  • You produce stress hormones (Alarm phase)
  • Your body returns to normal
  • You become stressed again on a regular basis
  • You enter the adaptation phase
  • You constantly maintain the stress response through permanent exposure
  • The adrenal glands become exhausted
  • Suggestion that you have adrenal fatigue or exhaustion phase

There are many problems with this interpretation and deduction of adrenal fatigue, and how many practitioners treat this reductionist diagnosis.  If your adrenals were truly fatigued, you may not actually be with us anymore and ultimately be dead. Cortisol which is produced by the adrenal glands, is the primary hormone that directs immune function, inflammation and is involved in virtually all aspects of body function. Certainly the terms hypocortisolemia, too little cortisol and hyper, too much cortisol make sense, and that is what a typical adrenal stress test tells us. Are we producing too much or not enough cortisol , on that particular day, based around a suggested norm?

Cortisol does go up and down, and probably outside of suggested arbitrary norms especially if you experience or engage in the following:

  • Excessive physiological or structural stress, intense exercise without adequate rest.
  • Psychological stress
  • Diet or fail to eat enough calories, eating too much may also contribute over time
  • Eat a so called healthy diet based upon current guidelines
  • Fail to get adequate sleep.
  • Chronic exposure to environmental pollutants

The longer one stays in a state of chronic stress the more compromised all aspects of body function become. This can ultimately result in hormone, immune and metabolic systems dysfunction.

The positives from treating the aspects of adrenal fatigue are a compliance of those suffering from the suggested condition, to address aspects of why they have got to this current state of affairs. Overworking, too much or too little exercise, not enough sleep and psychological stress recognition can be aspects that can be changed with great effect.

To create effective change, should we not consider other aspects of function that would treat the root cause, rather than plaster over the symptom? Lets take a look at the cross over between symptoms of both adrenal and thyroid dysfunction, which have roots in energy and digestion. You may start to notice that there are many symptoms that you may experience a mixture of both and to highlight adrenal fatigue alone is problematic. The thyroid gland supports energetic process’s and when this becomes compromised we call on the adrenal glands to act in a supporting role. Addressing energy, metabolism and digestion, should be the target of any lifestyle or therapeutic interventions.

Adrenal symptoms Thyroid symptoms
Fatigue

Difficulty sleeping

Low blood pressure

Clenching teeth

Dizzyness

Arthritic issues

Crave salt

Sweats a lot

Allergies

Weakness

Afternoon crash

Need to wear sunglasses

Anxiety

Weight gain or loss

Difficult to lose or gain weight

Nervousness/anxiety

Constipation

Hair loss

Poor energy/fatigue

Feel cold hands and feet

Mentally sluggish

Morning headaches

Seasonal sadness

Poor sleep

 

 

 

 

However treating adrenal fatigue in isolation with adaptogenic herbs, restriction of sugar and other stimulants as is often the case, may be unwarranted and most importantly ineffective in resolving these issues. Treating any system in isolation is reductionist and often gives you at best, reductionist results. The complex interaction of the Hypothalamus-Pituitary-Adrenal-Thyroid-Gonadal axis is a system that helps our body manage many global aspects of our body’s function and therefore addressing adrenal balance leaves a gaping hole in your treatment strategy. Consider that the adrenals and in particular cortisol production can be a slave to the your environment, nutrition, exercise and other lifestyle choices. Take stock, address what may be affecting your stress hormone production, If these factors can be changed do so. Stress is a double-edged sword. We need a certain amount of stress to improve our physiological function. Constant exposure to stress decreases our biological state.

Raising biological wholeness such as energy levels, cognition and increasing balance throughout the hormonal system can give much better results than focusing on the adrenals. Remember that the adrenals and ultimately cortisol production elevate in response to, what you eat, or fail to eat, the environment, psychological and physiological stress. All of these aspects are changeable.  In the next article I suggest some strategies that can be used to improve energy and lower adrenal stress.