A biochemical approach to decreasing muscle pain with food and hormones.

 pain and hormones

pain and hormones

A biochemical approach to decreasing muscle pain is often the last place most people look and that includes many pain specialists. Modulating pain and hormones through food and other variables can create some impressive results. Aches and pains are a common theme in every day living. Some people seek to push themselves harder with excessive training schedules, others spend more time in a seated position and other factors contribute to tissue not responding the way that it should. Pain and the concept of nociception is a system of feedback for the body that is protective in essence. You touch something you shouldn’t; first pain kicks in to remove you from the painful stimulus (lasts less than 0.1 seconds), after that and depending on severity of damage second pain kicks in.

First pain and second pain (both reside in the anterolateral system or ALS) utilise different chemical messengers and another factor for this form of feedback is that other nociceptive factors like touch, visual, auditory and other sensations of stress can be part of the problematic feedback if not resolved. All of these have the capacity to interrupt optimal motor control and functioning of joints and soft tissues and affect hormone profiles. Even a bad smell can create neurological chaos.

Another less well known aspect (in therapy based settings) of disruptive function in muscle tissue are the effects of hormones that may lead to decreased feed back and be responsible for pain. Hypothyroidism affects muscle tissue via energy and neurological deficiencies.

Hypothyroidism results in

Slower peripheral and central nerve conduction velocity Lower body temperature is a factor creating slowed velocity Decreased active cell transport in the cerebral cortex Decreased flux of sodium and calcium for contraction/relaxation Poor production of energy for contraction/relaxation Decreases depolarisation of action potential

 cold body

cold body

In a nutshell a colder, slower body leads to a decreased   coordinated body that has a hard time contracting and relaxing muscle tissue. This can lead to increased incidence of injury and pain.

A slowed heart rate is a sign of hypothyroidism and the bradychardia (slowed heart rate) should serve the purpose of describing the decreased rate of function throughout all muscle tissue. Thyroid hormone can improve both rate of contraction and relaxation in both fast and slow twitch muscles but also exerts a cardio protective role on blood vessels and bowel function via smooth muscle tissue. The documented symptoms of hypertension and constipation along with the neuromuscular actions tend to resolve with adequate thyroid hormone (Gao, Zhang, Zhang, Yang, & Chen, 2013).

Prior to initiating thyroid therapy it’s essential to rule out functionally hypothyroid states induced by diet, stress, excess exercise and other environmental factors. Many clients often present with lowered temperature, with cold hands, feet and nose, altered bowel, sleep and emotional function, which can often be resolved with appropriate energy and decreased intestinal irritants.

Chronic pain increases cortisol production which decreases thyroid hormone production (Samuels & McDaniel, 1997) as does fasting or calorie restriction which induces a decrease in available T3 (thyroid hormone) (Hulbert, 2000).

This gives us two approaches 1) to reduce pain with appropriate therapy and to ensure that adequate energy modulates the suppression of excess cortisol and increases available thyroid for tissue organisation and recovery.

Hormones also affect tendons; diabetics and poor insulin profiles appear to create disorganised tendon structure but this may be a factor related to decreased available thyroid hormone. Hypothyroidism decreases available T3 within tendons, which can decrease growth, structure, and collagen production and create hypoxia of tissue leading to calcification.

Estrogen, although necessary for growth of tissue can often be found in excess creating problematic growth. Estrogen is also well known to decrease thyroid hormone and can provide an explanation why more females then men tend to be hypothyroid. The decrease in both thyroid hormone and progesterone can increase muccopolysacharides, which increase pressure in tissues, creating puffy, oedema like states. The swelling can be linked to many pain states which include carpal tunnel, which can be resolved with progesterone and thyroid in the absence of physical therapy. Progesterone also appears to induce myelination of nerves (surrounds and allows nerve conduction) and decreases inflammation (Milani et al 2010).

Energy production remains  a most potent form of therapy for decreasing pain, optimising rehabilitation and restoring tissue function.

References:

  1. Gao, N., Zhang, W., Zhang, Y., Yang, Q., & Chen, S. (2013). Carotid intima-media thickness in patients with subclinical hypothyroidism: A meta-analysis. Atherosclerosis, 227(1), 18–25. http://doi.org/10.1016/j.atherosclerosis.2012.10.070

  2. Hulbert, A. (2000). Thyroid hormones and their effects: a new perspective. Biological Reviews of the Cambridge Philosophical Society, 75(4), 519–631. http://doi.org/10.1017/S146479310000556X

  3. Milani, P., Mondelli, M., Ginanneschi, F., Mazzocchio, R., & Rossi, A. (2010). Progesterone - new therapy in mild carpal tunnel syndrome? Study design of a randomized clinical trial for local therapy. Journal of Brachial Plexus and Peripheral Nerve Injury, 5(1). http://doi.org/10.1186/1749-7221-5-11

  4. http://raypeat.com/articles/aging/aging-estrogen-progesterone.shtml

  5. Samuels, M. H., & McDaniel, P. A. (1997). Thyrotropin levels during hydrocortisone infusions that mimic fasting- induced cortisol elevations: A clinical research center study. Journal of Clinical Endocrinology and Metabolism, 82(11), 3700–3704. http://doi.org/10.1210/jcem.82.11.4376