blood sugar levels

Sleep, stress, sugar. Eat sugar for better sleep.

Onset of sleep

Onset of sleep

Can you improve sleep and decrease stress by eating sugar for better sleep? If you put sleep, stress and sugar in the same sentence, most people think they have already put the three together with something like; too much sugar causes stress and affects your sleep. If you read on you should find yourself advantageously aware of sleep biology and why consuming sugary foods before sleep, and indeed if you wake up are the answer for a deeper nights sleep.

Ah a good nights sleep. You remember one of those don’t you? As a father to 3 children I have had my fair share of sleepless nights but a recent 11 hour sleep whilst my kids slept for 12 hours, recently reminded me of why everyone should strive for better sleep and the common approaches that people tend to fail to implement. A couple of years ago I studied a short course on the neurobiology of sleep with the University of Michigan and I found it useful as it correlated with aspects of serotonin function that Ray Peat (7,8) had talked previously talked about.

Generalisations of sleep biology phases are:

Sleep latency - Getting your sorry arse to sleep

NREM sleep - Keeping your sorry arse asleep

REM sleep - Deep arsed sleep

Wakefulness - Wake your sorry arse up

One of the primary driving factors of the onset of sleep or sleep latency is the production of adenosine. Caffeine is a well-known antagonist of adenosine and therefore many a wise word about not drinking caffeine after 3-4 pm as it has a half-life of 6 hours are well heeded (yes I know there are some of you that metabolise caffeine really well after that time with no impact on sleep, STOP SHOWING OFF).  Avoiding caffeine though out the day isn’t necessary and caffeine is a widely mis-understand compound that shows many beneficial effects, if you follow the rules for its consumption.

Often there is much focus on the role of melatonin and sleep induction and structures like the suprachiasmatic nucleus and waking. Melatonin does indeed promote sleep but so does adenosine and I think the supplementing of melatonin misses key biological functions that induce sleep more effectively and without the negative effects associated with its use.

Serotonin and melatonin confusion

Sleep wake compounds

Sleep wake compounds

Just like the holistic health practitioner that suggests that coffee causes adrenal fatigue (it doesn’t but that’s another blog by itself), some practitioners recommend the use of 5HTP - tryptophan supplements (tryptophan converts to serotonin) for better sleep but this is misguided for the following reasons. It’s true that melatonin is a hormone of sleep and that it is derived from serotonin and that serotonin has a small but limited role in inhibiting the cholinergic system responsible for keeping you in an alert, thinking state. In the diagram below and born out of many studies is that serotonin is a powerful compound of wakefulness that synergises with histamine and the histaminergic system to bring you out of the deeper REM sleep, and start the process of waking you the hell up. The diagram from Brown et al (Brown, Basheer, McKenna, Strecker, & McCarley, 2012) highlights the complexities of the sleep wake compounds but also useful for highlighting serotonin's role (5HT) in the excitatory waking state. It’s also a great overview of the many areas and compounds that aren’t addressed in this blog. One thing that should become clear is that the neural structures controlling sleep are many and so are the interactions between hormones and other compounds of wakefulness. My advice below is not complete but merely a reflection of some of the simple changes that you can do (and which I have done with many clients) to create better sleep and recovery. 

Here are a few pointers on serotonin and melatonin.

  • Many people are aware of the fact that at least 95% of the body's serotonin is produced in the intestines - namely the enterochromaffin cells.

  • People associate serotonin as a hormone of calmness. 1) It’s not a hormone 2) well known side effects of serotonin excess are insomnia and anger.

  • Serotonin induces spasticity of the colons smooth muscle tissues

  • Eating excess muscle meats increases serotonin (as does eating poorly digestible foods), inflammation and can contribute to increased wakefulness by synergising with histamine.

  • Melatonin may be implicated in seasonal affective disorder due to increased levels in darker winter days. Sunglass wearing may pose similar issues (Alpayci, Ozdemir, Erdem, Bozan, & Yazmalar, 2012)

  • Supplementation with melatonin during the day can induce disruptive changes to fertility and also suppress thyroid hormone (Creighton & Rudeen, 1989).

  • Peak concentrations of thyroid stimulating hormone (TSH) occur at night and might be suggestive of thyroid hormone suppression induced by melatonin and other hormones. The pituitary responds by increasing TSH to bolster thyroid hormone supply.

Of course there are other compounds which include acetylcholine, GABA, oxycretin, histamine and many other areas of the central nervous system that could be mentioned but I have tried to stick to the mechanisms that can be changed and promote change in a short space of time.

If you find it hard to drift off, these are my suggestions as to why this might happen:

  1. You are eating foods that promote intestinal inflammation and increase serotonin and histamine.

  2. You are exposed to excess stimulus such as blue light, Wi-Fi or other source.

  3. Your blood sugar levels are not balanced and promote the stress hormones that liberate glucose from stored fats and proteins - adrenaline-glucagon-cortisol.

If you wake up at night the following might be also be an issue

  1. You are eating foods that promote intestinal inflammation and increase serotonin and histamine.

  2. Your blood sugar levels are not balanced and promote the stress hormones that liberate glucose from stored fats and proteins - adrenaline-glucagon-cortisol.

Point 2 may be a significant factor for many people and available efficient glucose production may be one of the most under-rated factors in both the onset of sleep and maintenance of sleep. Waking up to urinate at night is a feature of the diabetic like state. Poor blood sugar regulation requires, that instead of relying on blood and liver glucose stores, the stress response be relied upon to liberate energy from stored fats. This is an inefficiency that requires a stressed state. You should not be waking at night to go for a pee.

Morning Cortisol profile

Morning Cortisol profile

You can see from the average nighttime cortisol profile that cortisol generally starts to rise around 2 am, steadily increasing prior to the onset of waking. If your ability to regulate blood sugar levels is compromised this can increase the burden to blood sugar regulation and increase waking further. The REM phase of sleep uses a similar amount of glucose as the waking state.

Here are some useful tips that I use with clients to promote better sleep and recovery.

  1. Take a look at the previous post on resolving digestion issues. This helps to take away some of the factors related to serotonin and histamine excess.

  2. If you are exercising hard, low carb, busy parent or whatever form of stress and therefore don’t manage your blood sugar levels, you don’t manage your sleep. If you struggle getting to sleep a sweet drink like milk and honey (yes the old wives tale works like a charm). A glass of fruit juice with gelatin is also good. Any pattern with something with sweet with a little protein/fat is useful.

  3. Add some salt - increased stress burdens the adrenal glands, usually though thyroid hormone suppression. Salt is wasted in this state and so is magnesium. Salt spares magnesium, so adding a little salt also helps magnesium regulation.

  4. If you wake during the night. This can be common when trying to resolve these issues as liver function and hormone regulation take a little time to adjust. Therefore having something sweet by the bed can help to help you re-enter sleep. Squeezy honey tube or pouch of juice with straw I find useful so that the juice goes straight down rather than covering my teeth.

  5. I have often found that progesterone and thyroid play a key role in sleep and many clients have benefitted from resolving the states of low progesterone/thyroid, which may not have resolved with food alone.

  6. Optimal blood sugar regulation often starts with eating breakfast to decrease adrenaline, glucagon and cortisol (Jakubowicz et al., 2015)(Levitsky & Pacanowski, 2013). Drinking a kale smoothie or coffee on an empty stomach is not the best way to break your fast and set up the day.

  7. Of course aspects of sleep hygiene related to no phones, WI-FI etc goes without thinking and go as far as turning your router off at night.So armed with some facts that you can decrease stress and improve sleep by eating sugar in the right amount, you can go and experiment for yourself.

References:

  1. Alpayci, M., Ozdemir, O., Erdem, S., Bozan, N., & Yazmalar, L. (2012). Sunglasses may play a role in depression. Journal of Mood Disorders, 2(2), 80. http://doi.org/10.5455/jmood.20120529055051

  2. Brown, R. E., Basheer, R., McKenna, J. T., Strecker, R. E., & McCarley, R. W. (2012). Control of Sleep and Wakefulness. Physiological Reviews, 92(3), 1087–1187. http://doi.org/10.1152/physrev.00032.2011

  3. Creighton, J. A., & Rudeen, P. K. (1989). Effects of Melatonin and Thyroxine Treatment on Reproductive Organs and Thyroid Hormone Levels in Male Hamsters. Journal of Pineal Research, 6(4), 317–323. http://doi.org/10.1111/j.1600-079X.1989.tb00427.x

  4. Jakubowicz, D., Wainstein, J., Ahrén, B., Bar-Dayan, Y., Landau, Z., Rabinovitz, H. R., & Froy, O. (2015). High-energy breakfast with low-energy dinner decreases overall daily hyperglycaemia in type 2 diabetic patients: a randomised clinical trial. Diabetologia, 58(5), 912–919. http://doi.org/10.1007/s00125-015-3524-9

  5. Levitsky, D. A., & Pacanowski, C. R. (2013). Effect of skipping breakfast on subsequent energy intake. Physiology and Behavior, 119, 9–16. http://doi.org/10.1016/j.physbeh.2013.05.006

Online:

7. http://raypeat.com/articles/articles/serotonin-depression-aggression.shtml

8. http://raypeat.com/articles/articles/serotonin-disease-aging-inflammation.shtml

[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section]

Estrogen and Progesterone

For the general public there is often no real need to understand what hormones are or what they do, unless faced with specific problems related to them. As hormones are affected increasingly by our environment, which includes: Food, air, water, physical and psychological stress, it seems that a basic understanding of problematic hormones can be helpful for maintaining or improving health. Before I attempt to give a brief overview of a complex subject, here are a few terms to be aware of, mainly related to female function.

Follicular phase- first 14 days of cycle to ovulation and increased production of estrogen, primarily E1

LH- Luteal phase, last 14 days, corpus luteum, which increases progesterone

Progesterone- Hormone of gestation, bone formation, anti clotting concerned with cell differentiation.

E1-E2-E3 – Estrogen classifications of Estrone, Estradiol and Estriol. Estrogen promotes growth and becomes problematic in the face of increased cellular division and changes or mutations.

Xenoestrogens – synthetic estrogen like compounds found in plastics, contraceptives, fuel and industrial waste. These have the capacity to increase estrogen levels in men, compounding issues related to testosterone function.

Progestin- synthetic progesterone. Lacking in the benefits of natural progesterone and increases unwanted symptoms.

CYCLEovul

Estrogen’s primary role is one of growth. It is used to stimulate growth of tissue, especially so in the endometrium. During the follicular phase estradiol increases and just before ovulation starts to decrease. Progesterone’s protective effects are enhanced via increased production of the corpus luteum.

Problems with excess estrogen have increased due to changes in diet, increased exposure to environmental pollutants and other factors that are not offset by increased production of progesterone. Below are just some of the actions of both estrogen and progesterone.

Effects of Estrogen Effects of Progesterone
·      Breast stimulation·      Endometrial proliferation

·      Increased body fat

·      Salt/ fluid retention

·      Clotting

·      Depression

·      Headaches

·      Decreased libido

·      Impairment of blood sugar

·      Reduced oxygen

·      Risk of breast cancer

·      Osteoporosis

·      Decreased thyroid

·      Increases CV issues.

·      Anti tumour effects·      Supportive to fertility

·      Sedative effects

·      Improves blood sugar

·     Decreases  Ovarian cysts

·      and Menopausal flushing

·      Removal of facial hair

·      Decreased Menstrual cramping

·      Improved auto-immune

·      Hormonal balance

·      Anti -Stress

·     Decreased arthritis

·      Promotes sleep

·      Thickens hair on head

 

 

 

Balancing blood sugar levels, particularly an issue during pre-menses, can be achieved with Progesterone. Hypoglycaemia is often present (especially so when engaged in exercise, low carbohydrate or calorie consumption) and particularly when oxidative damage occurs to cellular function, oxygen use is decreased and therefore a reliance on glycolysis, a sugar using energy system, which creates an abundance of lactic acid, occurs. Elevated levels of lactic acid are problematic, not only to cellular function but are also inefficient means of energy production. It’s transportation and conversion back to glycogen requires much more energy than it produces. Progesterone protects against estrogen’s anti-oxygen effects.

Progesterone is non-toxic even at elevated levels, however anaesthesia and euphoria has been recorded, along with changes to the menstrual cycle which can be noted as mainly positive. Symptoms related to PMS have often disappeared and its use is recommended only between ovulation and menstruation. Estrogen/progesterone balance can be achieved by supplementation, however diet can help to facilitate the change and serve to maintain the gains achieved with progesterone supplementation. In many cases decreased thyroid allows for excess estrogen in the body, via mechanisms of decreased energy to detoxify, which include liver and digestion mechanisms. The reverse can also be true due to increased estrogen decreasing thyroid function

Excess stress can be the cause of decreased progesterone and increased estrogen's, increased cortisol and decreased thyroid. The use of adequate protein within the diet and carbohydrates will ensure that thyroid is provided efficiently. Daily sunshine helps to promote optimal progesterone conversion, in addition to supplementation and those who live in areas with less sunlight should also consider progesterone supplementation.

During pregnancy, progesterone production can be one hundred times more than the amount seen during the premenstrual phase. A lack of progesterone during pregnancy has been associated with toxaemia. Symptoms include high blood pressure, excessive weight gain, oedema (fluid retention) and protein loss in the urine. If excess progesterone is available, the mother will simply use it, therefore an excess of progesterone would be preferred to a deficit and the likelihood of toxaemia induced by too little progesterone. Progestins seem to make many unwanted symptoms much worse

It is clear that decreasing exposure to environmental pollutants is helpful to lowering xenoestrogenic load. Foods that contain natural phytoestrogens can also affect estrogen/progesterone balance and where symptoms exist decreasing foods such as uncooked brassica vegetables, soy, nuts and seeds would be helpful in attempting to restore balance.

References:

Dalton, K The Menstrual Cycle.

Lee, J. Natural Progesterone, Multiple roles of a Remarkable Hormone. BLL Publishing

Peat, R. Nutrition for Women.

Tonilo, P.G. Endogenous estrogens and breast cancer risk: the case for prospective cohort studies. Environ Health Perspect. 1997 Apr;105 Suppl 3:587-92.

Online references:

http://raypeat.com/articles/articles/progesterone-summaries.shtml

http://raypeat.com/articles/articles/estrogen-age-stress.shtml