testosterone

Is testosterone replacement therapy necessary?

In a world where it is increasingly normal to be convinced that we fall into a risk classification, need a treatment and can convince our doctor accordingly, negating any experience that he or she might have. The marketeers and economists that run pharmaceutical companies are doing a great job of increasing profits. Before we keep looking for the next wonder treatment we should take stock of what food and exercise can do.

Testosterone can be increased by some very simple strategies such as:

  1. Having adequate liver and vitamin A in the diet to assist in the conversion of cholesterol to pregnenolone - the base hormone responsible for production of testosterone and other androgens.

  2. Ensuring that adequate energy and thyroid hormone are available to maintain communication of the hypothalamic- pituitary- (signalling centres for hormone production-brain to testicles) gonadal axis.

  3. Understanding stress, sleep and interactions between excesses of estrogen and their impact on testosterone production.

  4. Less understood but increasingly keeping mobile communication devices out of pockets and bags that are close to reproductive tissue, including females (ovaries, endometrium etc), appears to be a pragmatic approach in the future. Steroid producing tissues have increased production of problematic compounds that may be prone to damage.

Here's some of the technical aspects to the situation that are taken from a recent assignment as part of my masters degree..

Introduction

Testosterone is a hormone found in both males and females but is the major reproductive hormone in men that also has a variety of other beneficial functions for maintaining physical and psychological aspects to health. Testosterone levels may decrease with disease and/or be part of an age related decline of output. The use of testosterone supplementation has increased substantially in recent years counter these states, primarily due to increased marketing as an agent of change for energy, strength, fat loss and sexual function. Whilst its use appears beneficial in some areas, caution has been recommended on the effects of T supplementation use and it’s effects on the cardiovascular system.

 Diagnosis

Testosterone (T) is the most important androgen found in males and produced primarily within the testes, when low it is defined as hypogonadism. Hypogonadism is classified as either primary, derived from the testes or secondary, which involves the hypothalamus, pituitary or derived from illness or disease. A low serum testosterone (<300ng/dL) is suggestive, but not definitive of hypogonadism and measurements of luteinising (LH) and follicle stimulating hormone (FSH) is used to establish a primary or secondary diagnosis (Crawford & Kennedy, 2016). A worry trend is that despite striking increases of testosterone prescription a substantial amount (approximately 29% in this review) of patients often fail to have their levels checked prior to undertaking testosterone replacement therapy (TRT). (Corona G, Rastrelli, Maseroli, Sforza, & Maggi, 2015). Additionally only 45 % had their testosterone levels checked during or post TRT intervention.

Low testosterone and cardiovascular risk

Previous studies have highlighted an increase in all cause mortality associated with low testosterone levels in men (Araujo et al., 2011). Conditions that increase risk of mortality related to low testosterone are increased abdominal obesity, inflammatory biomarkers, dyslipidaemia, diabetes mellitus and metabolic syndrome. However the diagnosis of an isolated low testosterone level should be qualified by ruling out other potential diagnosis such as long-term illness, nutritional deficiencies and other endocrine issues such as subclinical or overt hypothyroidism.

Testosterone supplementation and risks

A number of studies and meta analysis have demonstrated a number of beneficial effects of TRT which extend to increased sexual satisfaction, muscle mass, strength mood and metabolic function (Corona G et al., 2015) (Gagliano-Jucá & Basaria, 2017). However the suggested risk to increased CV adverse events have appeared vague in many studies and previous extrapolations/anecdotes between men having increased levels of testosterone (and therefore increased cardiac risk) and females having less testosterone and more oestrogen were not just problematic but incorrect. Many studies have correlated low testosterone to low biomarkers of health and increased cardiovascular disease (Pastuszak, Kohn, Estis, & Lipshultz, 2017) (Kloner, Carson, Dobs, Kopecky, & Mohler, 2016).

TRT reductionism and treating symptoms

A comprehensive review of the data compiled by Oskui et al (Mesbah Oskui, P., French, W.J., Herring, 2013) described the major CV implications of TRT which can be observed below. The authors draw attention to previously conducted studies, that did not show any relationships between low levels of testosterone and CV risk and suggest that both the subfraction of testosterone (Total T compared to Free T) and method of analysis for CVD were inappropriate and therefore unreliable for inclusion. 

Cardiovascular analysis Studies Major findings Association between T and mortality 8 8/8 studies found relationship between low T and increased all cause and CV mortality. Type 2 DM 6 6/6 studies showed improved insulin sensitivity through HOMA-IR/HgA!c and improved blood glucose Cholesterol 3 2/3 studies found no change to LDL/HDL from TRT Markers of inflammation (primarily C reactive protein CRP) 8 4/8 studies found reduced CRP Intima media thickness 8 8/8 found an inverse relationship between low T and IMT

The above studies reviewed by the authors, established a link between low levels of testosterone and increases in mortality (all cause and CV), insulin sensitivity and increases in intima media thickness that are resolved by TRT. Yet markers for lipids and inflammation markers such as CRP are less convincing. Hypothyroidism is related to low testosterone and hypogonadic states mainly through hypothalamic-pituitary dysfunction. Treatment of hypothyroid and subclinical hypothyroid states also resolves low testosterone and hypogonadic states, decreases intima media thickness, improves insulin sensitivity and decreases lipid levels (Crawford & Kennedy, 2016), (Krassas, Poppe, & Glinoer, 2010),(Donnelly & White, 2000) (Gao, Zhang, Zhang, Yang, & Chen, 2013). Is TRT the correct therapy for many males, given a) the rapid increases in often undiagnosed and prescription and b) when hypogonadic states, that have similar (cardiac) manifestations and are improved beyond the effects of TRT, are resolved with thyroid hormone?

Another factor concerning reliability of the studies used in previous meta analysis is the size to determine true risk between CV adverse events and TRT (Onasanya et al., 2016). The authors suggesting that to achieve a two-sided p value of 0.05 and power of 80% some 17664 participants would need to study to clarify any relationship. Observational data conducted over 5 years suggested that control groups treated with testosterone in short term had a lower mortality (HR 0.88 95 % CI 0:84 - 0.93) than controls (Wallis et al., 2016). From the meta analysis and other studies discussed above both age (>65) and predisposition to existing disease states may indicate the likelihood of adverse CV events when treated with TRT.

Another draw back of meta-analysis is the inclusion of data and bias produced by pharmaceutical companies that may not be adequately reflected or assessed. Much like cardiovascular end point studies being scarce. Testosterone studies that are funded by financial interests are usually in place to validate the benefits of TRT and fail to evaluate CV adverse events as end points. The increased adequate sample size needed to validate the safety and efficacy of this treatment often increase cost and decrease profit margin over time. The many studies that have been conducted so far, show much smaller sample sizes and a wide range of TRT delivery and dosing.

In a recent case crossover analysis that is not included in any current meta analysis, Layton et al (Layton et al., 2018) found a unique association between testosterone injections and short term cardio (and cerebrovascular) events in older men. Increased associations with myocardial infarction and stroke, post testosterone injection showed odds ratio (OR) were increased for all outcomes, OR =1.45 (95%: CI 1.07, 1.98).

Summary

Testosterone replacement does appear to have many positive effects on a number of markers related to cardiovascular health which include sexual performance, increased muscle mass, metabolic health, physical performance and decreasing mortality in a younger population. However, despite the many benefits of TRT the use of this therapy may have significant risk in late onset hypogonadal states, in ages >65 years of age, those susceptible to conditions associated with erythrocytosis and an association with acute cardiac events exists. It remains essential to ensure that not only adequate analysis of hypogonadal states are present but to ascertain if low testosterone levels are merely a symptom of other endocrine disturbances, such as hypothyroidism which has striking similarities to low levels of testosterone.

Want some more free resources on hormones?

References:

1.Araujo, A. B., Dixon, J. M., Suarez, E. a, Murad, M. H., Guey, L. T., & Wittert, G. a. (2011). Clinical review: Endogenous testosterone and mortality in men: a systematic review and meta-analysis. The Journal of Clinical Endocrinology and Metabolism, 96(10), 3007–19. http://doi.org/10.1210/jc.2011-1137

2.Basaria, S., Davda, M. N., Travison, T. G., Ulloor, J., Singh, R., & Bhasin, S. (2013). Risk Factors Associated with Cardiovascular Events During Testosterone Administration in Older Men with Mobility Limitation. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 68(2), 153–60. http://doi.org/10.1093/gerona/gls138

  1. Corona G, G., Rastrelli, G., Maseroli, E., Sforza, A., & Maggi, M. (2015). Testosterone Replacement Therapy and Cardiovascular Risk: A Review. The World Journal of Men’s Health, 33(3), 130–42. http://doi.org/10.5534/wjmh.2015.33.3.130

  2. Crawford, M., & Kennedy, L. (2016). Testosterone replacement therapy: role of pituitary and thyroid in diagnosis and treatment. Translational Andrology and Urology, 5(6), 850–858. http://doi.org/10.21037/tau.2016.09.01

  3. Donnelly, P., & White, C. (2000). Testicular dysfunction in men with primary hypothyroidism; Reversal of hypogonadotrophic hypogonadism with replacement thyroxine. Clinical Endocrinology, 52(2), 197–201. http://doi.org/10.1046/j.1365-2265.2000.00918.x

  4. Gagliano-Jucá, T., & Basaria, S. (2017). Trials of testosterone replacement reporting cardiovascular adverse events. Asian Journal of Andrology, 19(May), 1–7. http://doi.org/10.4103/aja.aja

  5. Gao, N., Zhang, W., Zhang, Y., Yang, Q., & Chen, S. (2013). Carotid intima-media thickness in patients with subclinical hypothyroidism: A meta-analysis. Atherosclerosis, 227(1), 18–25. http://doi.org/10.1016/j.atherosclerosis.2012.10.070

  6. Kloner, R. A., Carson, C., Dobs, A., Kopecky, S., & Mohler, E. R. (2016). Testosterone and Cardiovascular Disease. Journal of the American College of Cardiology. http://doi.org/10.1016/j.jacc.2015.12.005

  7. Krassas, G. E., Poppe, K., & Glinoer, D. (2010). Thyroid Function and Human Reproductive Health. Endocrine Reviews, 31(5), 702–755. http://doi.org/10.1210/er.2009-0041

  8. Layton, J. B., Li, D., Meier, C. R., Sharpless, J. L., Stürmer, T., & Brookhart, M. A. (2018). Injection testosterone and adverse cardiovascular events: A case-crossover analysis. Clinical Endocrinology. http://doi.org/10.1111/cen.13574

  9. Mesbah Oskui, P., French, W.J., Herring, M. J. et al. (2013). Testosterone and the Cardiovascular System: A comprehensive Review of the Clinical Literature. Journal of the American Heart Association. http://doi.org/10.1161/JAHA.113.000272

  10. Onasanya, O., Iyer, G., Lucas, E., Lin, D., Singh, S., & Alexander, G. C. (2016). Association between exogenous testosterone and cardiovascular events: an overview of systematic reviews. The Lancet Diabetes and Endocrinology. http://doi.org/10.1016/S2213-8587(16)30215-7

  11. Pastuszak, A. W., Kohn, T. P., Estis, J., & Lipshultz, L. I. (2017). Low Plasma Testosterone Is Associated With Elevated Cardiovascular Disease Biomarkers. The Journal of Sexual Medicine, 14(9), 1095–1103. http://doi.org/10.1016/j.jsxm.2017.06.015

  12. Roos, A., Bakker, S. J. L., Links, T. P., Gans, R. O. B., & Wolffenbuttel, B. H. R. (2007). Thyroid function is associated with components of the metabolic syndrome in euthyroid subjects. The Journal of Clinical Endocrinology and Metabolism, 92(2), 491–6. http://doi.org/10.1210/jc.2006-1718

  13. Udovcic, M., Pena, R. H., Patham, B., Tabatabai, L., & Kansara, A. (2017). Hypothyroidism and the Heart. Methodist DeBakey Cardiovascular Journal, 13(2), 55–59. http://doi.org/10.14797/mdcj-13-2-55

  14. Wallis, C. J. D., Lo, K., Lee, Y., Krakowsky, Y., Garbens, A., Satkunasivam, R., … Nam, R. K. (2016). Survival and cardiovascular events in men treated with testosterone replacement therapy: an intention-to-treat observational cohort study. The Lancet. Diabetes & Endocrinology, 4(6), 498–506. http://doi.org/10.1016/S2213-8587(16)00112-1

  15. Xu, L., Freeman, G., Cowling, B. J., & Schooling, C. M. (2013). Testosterone therapy and cardiovascular events among men: A systematic review and meta-analysis of placebo-controlled randomized trials. BMC Medicine, 11(1). http://doi.org/10.1186/1741-7015-11-108

 

Osteoporosis- could your exercise, nutrition and medical advice be better?

Osteoporosis and bone health, like many other aspects of optimal biology is a product of an organisms inputs and reactions to environmental stimulus. Osteoporosis is a condition like others, where prevention is often easier than the cure but perhaps the cure has been overcomplicated? Osteoporosis is a multifactorial musculoskeletal disease that is usually associated with the ageing process, decreased bone mineral density (BMD) and its tendency to fracture easily.       It’s clear that a number of factors that can be maintained throughout life to reduce the incidence of Osteoporosis in both men and women. Before we review those and compare with current guidelines, here’s some background info on the subject.

Primary Osteoporosis is the age related decline in men at around 70 and suggested as being a postmenopausal state, induced through the decreased production of estrogen in females. This last point is accepted in medical literature as the main cause of osteoporosis in females but may be severely flawed (more on this point later).

Secondary osteoporosis can be related to the following factors

Hypogonadism - testosterone/estrogen deficiency
Endocrine disease - Cushing’s syndrome, acromegaly, thyrotoxicosis, Addison’s disease and hyperparathyroidism
Dietary or assimilation deficiencies of calcium, vitamin K, vitamin D and other nutrients
Inflammation-rheumatoid arthritis, systemic lupus and ankylosing spondylitis
Neoplasms- Myleoma, lymphoma and leukaemia
Reduced physical activity
Medical drugs - corticosteroids, antiretroviral, antipsychotic, chemotherapy, hormone therapy, nicotine and excessive alcohol
Family history/genetics
Diabetes

The financial burden from osteoporosis generally, will increase from 98 Million Euros to 121 billion with proportional increases of 27.5 million to approximately 34 million people between the years 2010 to 2025 (Hernlund et al., 2013). Despite these huge burdens there appears to be a lack of well-designed educational programs that are geared at prevention of osteoporosis through non-pharmacological means.

The supplementation of vitamin D and calcium are well documented in osteoporosis strategies but a strategy to avoid these states are diets containing adequate calcium, vitamin A, K, magnesium (and others) adequate sunlight and moderate exercise.

Ok, so there’s a problem, it’s big business and there’s a lot of great info on how to avoid it right? Well no and here are the major points why I believe its not.

Diagnosis

 Dual energy X-ray absorptiometry (DEXA) is the recommended choice for osteoporosis diagnosis, serum calcium, phosphate, creatinine (with GFR) alkaline phosphatase, liver function, 25 OHD, total testosterone, estrogen CBC and 24 urinary calcium excretion are recommended for the interpretation of secondary causes of osteoporosis (Watts et al., 2012).

Hormones

Estrogen loss is touted as the most significant factor in decreasing BMD yet it’s action only retards resorption, or the removal of calcium from bone. Estrogen tends to inhibit the action of osteoclasts which ultimately reduce BMD. It’s the main reason the introduction of hormone replacement therapy (HRT) was considered as the primary treatment until its long-term use was found to induce clotting and cancer in women. So estrogen does not reverse Osteoporosis, it prevents further bone loss.

A variety of studies have suggested little influence of testosterone in males on BMD and that low estradiol levels combined with elevated sex hormone binding globulin appear to increase the loss of BMD (Cauley et al., 2010). A point worth noting from the correlation associated with higher estradiol levels and decreased BMD loss is that all participants in the study were recorded as having increased weight and BMD, which may influence skeletal modelling due to increased bone-loading parameters. Perhaps too much emphasis has been given to the suggestion that estrogen and its primary role of tissue proliferation amongst others, which should follow the course of age related decline?

Progesterone on the other hand has been shown to be a bone trophic or building factor that increases mineralisation of BMD, via osteoblasts (Prior, 1990). Stress increases cortisol and decreases progesterone binding at the receptor, with a preference for the glucocorticoid. Ray Peat (1997) points out that cortisol causes bone loss and its widely accepted that progesterone has an “antiglucocorticoid” action, it is reasonable to think that progesterone should protect against bone loss, and that it is a progesterone deficiency after menopause which is a major factor in the development of osteoporosis.

Thyrotoxicosis has been suggested as a mechanism of bone resorption but this appears inaccurate-  Ray Peat does a much better job at explaining this.

Medical treatment

Bisphosphonates are the first line medical treatment for treating osteoporosis and show modest changes to hip and vertebral BMD over 3 years. There use may come at a risk. Gastro intestinal side effects are well documented and in some the increase of osteonecrosis of the jaw has been observed. In some, the long-term use has been shown not only to increase the rate of fragility fracture but also to inhibit the healing process. It should be noted that adequate calcium and vitamin D in the diet are essential for bisphosphonate effectiveness

 Nutrition

 There tend to be two well-known stances to the fitness industries approach to nutrition. One, the transformation approach, where limiting of nutrients, particularly dairy and carbohydrates and intermittent fasting are the norm. Another, the holistic warrior whose consumption of chia seeds and all things green, raw and limiting of dairy and sugar again,  may be a factor into lowering BMD in later life. Calcium is an essential nutrient for bone health and dairy is indeed a great source of calcium. Here’s an old blog on the subject.

 It’s clear that adequate vitamin D is a nutrient that is important in BMD maintenance. It regulates calcium levels, decreases the production of parathyroid hormone, which is a potent resorption factor of skeletal calcium when calcium or vitamin D are low. Here are the main points that relate to diet.

  • Vitamin D in isolation and particularly high doses increases fracture rates (Janssen, Samson, & Verhaar, 2002)
  • Unless vitamin D is accompanied by adequate calcium, BMD can decrease further.
  • Vitamin K2 can prevent the calcification of soft tissues and help improve blood calcium levels (Masterjohn, 2007)
  • High meat and diets high in pulses and beans can have a negative effect on calcium levels due to their high phosphate levels.
  • Unless you assess other key nutrients like magnesium and the factors discussed above
  • Low diary intake can be associated with poor bone health.
  • The low carbohydrate, raw green and seed eating diet suggested by holistic health practitioners may contribute to lower BMD.

Exercise

Regular exercise has been touted as a significant factor in maintaining muscle mass and increasing BMD. But is the type of exercise that people are doing, increasingly in their younger years, contributing to better or worse outcomes to BMD. For bone to form adequate carbon dioxide (CO2 ) is essential. Some exercise regimes are so challenging, they contribute to excess levels of metabolic acidosis (lactic acid) and passing of CO2 from the body (worth noting that sugar consumption can also help to increase CO2 production) . Perhaps for exercise to be effective it should be light to moderate, with adequate rest periods that don’t mean that the participant is lying in a pool their sweat and vomit.

Walking, strength training with adequate rest, yoga, Pilates and other modes of moderate exercise appear most suitable for modest improvements to bone health but the diet and hormone factors are key.

It’s clear that osteoporosis is in the rise but it can be reversed. But instead of heading advice like cutting out dairy, eating lots of uncooked vegetables and training to complete exhaustion. There are more suitable mechanisms for improving bone health

References:

Cauley, J. A., Ewing, S. K., Taylor, B. C., Fink, H. A., Ensrud, K. E., Bauer, D. C., … Orwoll, E. S. (2010). Sex steroid hormones in older men: longitudinal associations with 4.5-year change in hip bone mineral density--the osteoporotic fractures in men study. The Journal of Clinical Endocrinology and Metabolism, 95(9), 4314–23. http://doi.org/10.1210/jc.2009-2635

Hernlund, E., Svedbom, a, Ivergård, M., Compston, J., Cooper, C., Stenmark, J., … Kanis, J. a. (2013). Osteoporosis in the European Union: medical management, epidemiology and economic burden. Archives of Osteoporosis, 8(1–2), 136. http://doi.org/10.1007/s11657-013-0136-1

Janssen, H. C. J. P., Samson, M. M., & Verhaar, H. J. J. (2002). Vitamin D deficiency, muscle function, and falls in elderly people. The American Journal of Clinical Nutrition, 75(4), 611–5. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11916748

Masterjohn, C. (2007). Vitamin D toxicity redefined: Vitamin K and the molecular mechanism. Medical Hypotheses, 68(5), 1026–1034. http://doi.org/10.1016/j.mehy.2006.09.051

Peat, R. (1999). Thyroid Therapies, Confusion and Fraud. Retrieved from www.raypeat.com/articles/articles/thyroid.shtml

Prior, J. C. (1990). Progesterone as a bone-trophic hormone. Endocrine Reviews, 11(2), 386–398. http://doi.org/10.1210/edrv-11-2-386

Watts, N. B., Adler, R. A., Bilezikian, J. P., Drake, M. T., Eastell, R., Orwoll, E. S., & Finkelstein, J. S. (2012). Osteoporosis in men: an Endocrine Society clinical practice guideline. The Journal of Clinical Endocrinology and Metabolism, 97(6), 1802–1822. http://doi.org/10.1210/jc.2011-3045

Estrogen and Progesterone

For the general public there is often no real need to understand what hormones are or what they do, unless faced with specific problems related to them. As hormones are affected increasingly by our environment, which includes: Food, air, water, physical and psychological stress, it seems that a basic understanding of problematic hormones can be helpful for maintaining or improving health. Before I attempt to give a brief overview of a complex subject, here are a few terms to be aware of, mainly related to female function.

Follicular phase- first 14 days of cycle to ovulation and increased production of estrogen, primarily E1

LH- Luteal phase, last 14 days, corpus luteum, which increases progesterone

Progesterone- Hormone of gestation, bone formation, anti clotting concerned with cell differentiation.

E1-E2-E3 – Estrogen classifications of Estrone, Estradiol and Estriol. Estrogen promotes growth and becomes problematic in the face of increased cellular division and changes or mutations.

Xenoestrogens – synthetic estrogen like compounds found in plastics, contraceptives, fuel and industrial waste. These have the capacity to increase estrogen levels in men, compounding issues related to testosterone function.

Progestin- synthetic progesterone. Lacking in the benefits of natural progesterone and increases unwanted symptoms.

CYCLEovul

Estrogen’s primary role is one of growth. It is used to stimulate growth of tissue, especially so in the endometrium. During the follicular phase estradiol increases and just before ovulation starts to decrease. Progesterone’s protective effects are enhanced via increased production of the corpus luteum.

Problems with excess estrogen have increased due to changes in diet, increased exposure to environmental pollutants and other factors that are not offset by increased production of progesterone. Below are just some of the actions of both estrogen and progesterone.

Effects of Estrogen Effects of Progesterone
·      Breast stimulation·      Endometrial proliferation

·      Increased body fat

·      Salt/ fluid retention

·      Clotting

·      Depression

·      Headaches

·      Decreased libido

·      Impairment of blood sugar

·      Reduced oxygen

·      Risk of breast cancer

·      Osteoporosis

·      Decreased thyroid

·      Increases CV issues.

·      Anti tumour effects·      Supportive to fertility

·      Sedative effects

·      Improves blood sugar

·     Decreases  Ovarian cysts

·      and Menopausal flushing

·      Removal of facial hair

·      Decreased Menstrual cramping

·      Improved auto-immune

·      Hormonal balance

·      Anti -Stress

·     Decreased arthritis

·      Promotes sleep

·      Thickens hair on head

 

 

 

Balancing blood sugar levels, particularly an issue during pre-menses, can be achieved with Progesterone. Hypoglycaemia is often present (especially so when engaged in exercise, low carbohydrate or calorie consumption) and particularly when oxidative damage occurs to cellular function, oxygen use is decreased and therefore a reliance on glycolysis, a sugar using energy system, which creates an abundance of lactic acid, occurs. Elevated levels of lactic acid are problematic, not only to cellular function but are also inefficient means of energy production. It’s transportation and conversion back to glycogen requires much more energy than it produces. Progesterone protects against estrogen’s anti-oxygen effects.

Progesterone is non-toxic even at elevated levels, however anaesthesia and euphoria has been recorded, along with changes to the menstrual cycle which can be noted as mainly positive. Symptoms related to PMS have often disappeared and its use is recommended only between ovulation and menstruation. Estrogen/progesterone balance can be achieved by supplementation, however diet can help to facilitate the change and serve to maintain the gains achieved with progesterone supplementation. In many cases decreased thyroid allows for excess estrogen in the body, via mechanisms of decreased energy to detoxify, which include liver and digestion mechanisms. The reverse can also be true due to increased estrogen decreasing thyroid function

Excess stress can be the cause of decreased progesterone and increased estrogen's, increased cortisol and decreased thyroid. The use of adequate protein within the diet and carbohydrates will ensure that thyroid is provided efficiently. Daily sunshine helps to promote optimal progesterone conversion, in addition to supplementation and those who live in areas with less sunlight should also consider progesterone supplementation.

During pregnancy, progesterone production can be one hundred times more than the amount seen during the premenstrual phase. A lack of progesterone during pregnancy has been associated with toxaemia. Symptoms include high blood pressure, excessive weight gain, oedema (fluid retention) and protein loss in the urine. If excess progesterone is available, the mother will simply use it, therefore an excess of progesterone would be preferred to a deficit and the likelihood of toxaemia induced by too little progesterone. Progestins seem to make many unwanted symptoms much worse

It is clear that decreasing exposure to environmental pollutants is helpful to lowering xenoestrogenic load. Foods that contain natural phytoestrogens can also affect estrogen/progesterone balance and where symptoms exist decreasing foods such as uncooked brassica vegetables, soy, nuts and seeds would be helpful in attempting to restore balance.

References:

Dalton, K The Menstrual Cycle.

Lee, J. Natural Progesterone, Multiple roles of a Remarkable Hormone. BLL Publishing

Peat, R. Nutrition for Women.

Tonilo, P.G. Endogenous estrogens and breast cancer risk: the case for prospective cohort studies. Environ Health Perspect. 1997 Apr;105 Suppl 3:587-92.

Online references:

http://raypeat.com/articles/articles/progesterone-summaries.shtml

http://raypeat.com/articles/articles/estrogen-age-stress.shtml